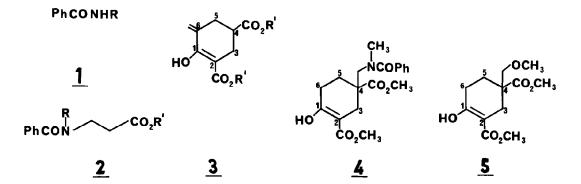
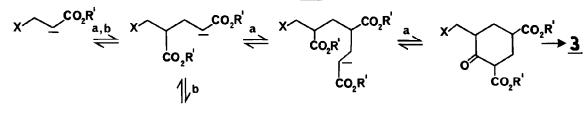
6-METHYLENE CYCLOHEXANONE-2,4-DICARBOXYLATES FROM THE ANIONS OF SECONDARY AMIDES AND ACRYLATES R,H,B,GALT* and Z.S.MATUSIAK

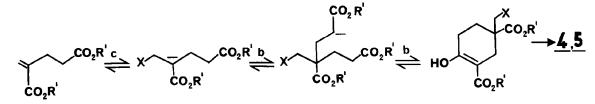
ICI Ltd., Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SK10 4TG, England

6-Methylene cyclohexanone-2,4-dicarboxylates as their enol tautomers¹ (3) are the major products from condensation of the anions of secondary amides with acrylates.


In an attempt to make 2 (\mathbb{R}^{1} =Et, R = allyl), ethyl acrylate was added to the anion of Nallyl benzamide (1, R = allyl) generated with NaH (1 mol.) in DMF at 0°C. The major product (60% based on acrylate), isolated as a pure liquid after chromatography on silica gel, was assigned the structure 3 (\mathbb{R}^{1} = Et), \forall max (film) 1735, 1665, 1640, 1600cm⁻¹; violet colour with FeCl₃; M⁺ 254 (C₁₃H₁₈O₅); δ_{H} (CDCl₃) 1.26 (3H,t,ester CH₃), 1.32 (3H,t,ester CH₃), 2.2 \rightarrow 2.8 (5H, br, 2 CH₂'s and \geq CH-CO₂Et), 4.22 (2H, q, ester CH₂), 4.3 (2H, q, ester CH₂), 5.32 and 5.96 (2H, \geq CH₂), 12.0 (1H, OH). Other secondary amide anions can act as initiators of these acrylate condensation reactions. With N-methyl benzamide (1, R = Me) and ethyl acrylate, 3(\mathbb{R}^{1} = Et) was again the major product (\sim 60% yield). When 1 (R = Me) and methyl acrylate were the reactants, crystalline products were isolated but the reaction was more complex. The structure of 3 (\mathbb{R}^{1} = Me), m.p. 68 - 70°C, obtained in 55% yield, was supported by partially decoupled ¹³C n.m.r. - δ_{c} 25.9 (t, -CH₂-), 33.2 (t, -CH₂-), 39.2 (d, -C<u>H</u>-CO₂Me), 52.5 (2q, ester Me's), 98.1 (s, = <u>C</u>-CO₂Me), 117.2 (t, =CH₂), 136.5 (s, -<u>C</u>=CH₂), 163.5, 172.6 and 174.1 (3s, 3 C = 0).

An aromatic amide, $C_{19}H_{23}NO_6$, m.p. 106 - 107°C, was also isolated in 12% yield and spectral data supported structure 4 - δ_c 26.1 (t, -CH₂-) 27.6 (t, -CH₂-), 28.8 (t, -CH₂), 39.9 (q, -N-CH₃), 46.6 (s, - \dot{C} -CO₂Me), 51.4 (q, -0-CH₃), 52.2 (q, -0-CH₃) 55.2 (t, -CH₂-N-), 95.3 (q, = \dot{C} -CO₂Me), 126.8 (2d, o- or m- aromatics), 128.3 (2d, o- or m- aromatics) 129.5 (d, p aromatic c), 136.3 (s, Ph <u>C</u>O-), 170.7, 172.2, 172.4 and 174.9 (4s, 4 C = 0's); $\delta_{\rm H}$ 2.1-2.6 (5H, complex; 2H at C5, 2H at C6, 1H of AB quartet at C3), 2.95 (3H, s, -N-CH₃), 2.97 (1H of AB quartet at C3), 3.72 (3H, s, ester CH₃), 3.77 (3H, s, ester CH₃), 3.8 (2H, - \dot{C} -CH₂-N- AB quartet), 7.41 (5H, aromatic). The n.m.r. spectra of 4 indicate some restricted rotation in the geminal substituents at C4. The room temperature ¹³C n.m.r. showed the -N-CH₃ and - \dot{C} -CH₂-N-groups as weak broad signals which sharpened considerably at 54°C.


The structure 5 was assigned to a further product, $C_{12}H_{18}O_6$, m.p. 73 - 74°C obtained in 5% yield. Compared with 3(R' = Me), 5 lacked the exocyclic methylene group but had an additional -OMe singlet at & 3.29 and a two proton singlet (-<u>CH</u>₂-OMe) at & 3.42. The ¹³C n.m.r. bore strong similarities to that of 4 - & C 26.0 (2t, 2-CH₂-), 27.7 (t, -CH₂-), 46.3 (s, - $\frac{L}{2}$ -CO₂Me), 51.3 (q, CO₂Me), 52.0 (q, CO₂Me), 59.3 (q, -CH₂-O-<u>CH</u>₃), 77.4 (t, -<u>CH</u>₂-O.CH₃),


95.2 ($s_1 = \frac{1}{C} \cdot CO_2 Me$), 170.5, 172.2, 174.7 (3s, 3C = 0). Me O-

Presumably 3 arose from 1 via route (a) of scheme A (where X = Ph.CO.N - or Ph.C=N.Me) and route (b) is a possible source of 4. The shunt c gives an opportunity for the methoxide ion generated in the Dieckmann condensation to add to the conjugated ester and thus provide the intermediates for 5. 4 could not be converted directly to 5 with sodium methoxide in D.M.F. under conditions close to those of the reaction.

Scheme A

Acknowledgement - B.Wright and R.Pickford are thanked for measurement and discussion of the n.m.r. spectra.

References

1. Nazarov reagents, e.g. ethyl acryloylacetate V $CO_2C_2H_5$ are 50% enolised, c.f., L.Pichat and J.P. Beaucourt, Synthesis, 537, 1973.

(Received in UK 8 May 1981)